Стартует РН ЭНЕРГИЯ

Правда
30 июля 1988 года

"Энергия" - к взлету!

Запуск новой советской ракеты-носителя тяжелого класса "Энергия" вызвал огромный интерес и специалистов, и широкой обществейности. Оно и понятно - с созданием такой ракеты у нас открываются уникальные возможности по расширению исследований космического пространства.

Начать, пожалуй, надо с пояснения, что речь идет о новой универсальной ракетно-космической системе. Она позволяет выводить на околоземные орбиты полезную нагрузку массой более 100 тонн как в виде многоразового орбитального корабля, подготовка к первому запуску которого сейчас активно ведется, так и в виде самостоятельных крупногабаритных космических аппаратов.

В качестве третьей ступени могут использоваться и специальные разгонные ракетные блоки со своей системой управления, несущие полезную нагрузку. По такой схеме будут решаться задачи, связанные с выводом космических аппаратов на геостационарную орбиту, на траектории полета к Луне и планетам. Массы объектов, выводимых на стационарную орбиту, составят около 18 тонн, а разгоняемых по траектории полета к Луне - 32 тонны, Марсу и Венере - до 28 тонн.

Такая универсальность - важная отличительная черта "Энергии", ибо она является именно ракетой, а не снабженным ускорителями орбитальным самолетом.

Ракета-носитель "Энергия" выполнена по двухступенчатой схеме "пакет" с продольной компоновкой четырех блоков первой ступени вокруг центрального блока второй ступени и асимметричным расположением полезного груза. Стартовая масса ракеты может достигать 2.400 тонн. Каждый блок первой ступени снабжен четырехкамерным жидкостным ракетным двигателем (ЖРД), работающим на жидком кислороде и углеводородном горючем. Тяга двигателя первой ступени составляет 740 тонн у поверхности Земли и 806 - в пустоте. Вторая ступень работает на кислородно-водородном топливе и имеет четыре однокамерных ЖРД с тягой каждого 148 тонн у поверхности Земли и 200 - в пустоте.

Запуск двигателей первой и второй ступеней осуществляется почти одновременно перед стартом. Суммарная тяга в начале полета - около 3.600 тонн. Принятая схема позволяет уйти от проблемы запуска двигателей в невесомости и дополнительно повышает надежность выведения.

Блоки первой ступени после выработки топлива отделяются попарно от ракеты, затем разделяются и приземляются в заданном районе. Они могут оснащаться средствами возвращения и посадки, которые размещаются в специальных отсеках. После проведения диагностических, профилактических и ремонтно-восстановительных работ возможно их повторное использование. Центральный блок - вторая ступень - отделяется после набора суборбиталъной скорости и приводняется в заданном районе акватории Тихого Океана. Такая схема выведения выбрана, чтобы исключить засорение околоземного пространства отработанными крупногабаритными фрагментами ракет-носителей. А доразгон до орбитальной скорости выполняют двигательные установки полезного груза, орбитального корабля или разгонного блока. Иными словами говоря, они выполняют функции третьей ступени.

Сборка ракеты в "пакет", ее транспортировка на специальном агрегате-установщике из монтажно-испытательного корпуса на стартовую позицию, обеспечение силовых, пневмо-гидравлических и электрических связей с пусковым устройством ведутся с использованием переходного стартово-стыковочного блока, который после пуска ракеты остается на стартовом комплексе и может использоваться повторно.

Еще одна принципиальная особенность ракеты-носителя "Энергия" - построение ее на базе блока второй ступени и унифицированных модулей первой ступени. Это придает системе гибкость и позволяет на последующих этапах создать pяд перспективных носителей тяжелого и сверхтяжелого классов различной грузоподъемности в зависимости от числа модулей в их составе.

На пути к летным испытаниям новой ракеты-носителя стояло множество сложных научных, инженерных и организационных проблем. При создании "Энергии" были объединены усилия сотен конструкторских бюро, заводов, научно-исследовательских центров, строительно-монтажных и эксплуатационных предприятий. Десятки министерств и ведомств, Академия наук СССР и академии союзных республик внесли свой вклад в эти работы.

Мощная ракета потребовала применения высокоэнергетических видов топлива, в том числе в качестве окислителя - жидкого кислорода, охлажденного до температуры минус 186 градусов Цельсия, в качестве горючего для второй ступени - жидкого водорода, охлажденного до температуры минус 255 градусов. Были разработаны и использованы при изготовлении баков, трубопроводов, элементов гидроавтоматики специальные конструкционные материалы, работающие при криогенных температурах и обладающие значительной удельной прочностью. Внедрен ряд новых марок высокопрочных сталей, алюминиевых и титановых сплавов. Созданы новые теплозащитные и теплоизоляционные покрытия. В общей сложности новые материалы на ракете-носителе "Энергия" составляют свыше 70 процентов от ее сухой массы.

Освоена технология изготовления крупногабаритных "вафельных" конструкций оболочек баков, сборка блоков большого диаметра с применением в промышленном масштабе электронно-лучевой и импульсно-дуговой сварки. Оболочки вафельного типа применяются в настоящее время в ракетной технике достаточно широко.

Решена проблема транспортировки баков и отсеков центрального блока диаметром 8 метров и массой более 40 тонн с завода-изготовителя на техническую позицию. Для этого используется специальная модификация тяжёлого самолета, с помощью которого впервые в мире начаты регулярные транспортные операции по перевозке конструкций огромных габаритов - диаметр груза превышает диаметр фюзеляжа самолета почти в два с половиной раза.

Одной из наиболее сложных и фундаментальных проблем было создание надежных, мощных маршевых двигателей как для первой, так и для второй ступеней. В Советском Союзе развитию и совершенствованию жидкостных ракетных двигателей традиционно уделяется большое внимание. Унифицированные для первых ступеней ракет-носителей нового поколения, включая "Энергию", двигатели РД-170 построены по наиболее экономичной - замкнутой схеме, при которой отработанный в турбине газ дожигается в основной камере сгорания, и обладают рекордными характеристиками по тяге и удельному импульсу в своем классе. Они снабжены сверхмощными (более 250 тысяч лошадиных сил) турбонасосными агрегатами.

Значительным достижением отечественного ракетостроения стало создание многоресурсных маршевых двигателей большой тяги для второй ступени ракеты-носителя "Энергия" на энергоемких компонентах топлива. Конструкторам удалось обеспечить высокие заданные характеристики при минимальных газодинамических потерях, регенеративном охлаждении, стойкости применяемых материалов в среде жидкого водорода.

Для управления движением ракеты на участке выведения маршевые двигатели снабжены прецизионной (точность - до 1 процента, от диапазона перемещений электрогидравлической системой рулевых приводов. Они развивают суммарное усилие до 50 тонн в каждой плоскости качания маршевых двигателей первой ступени и более 30 тонн - на второй ступени ракеты.

Емкие многоплановые проблемы решались при создании автономного бортового управления ракетой на базе многомашинного вычислительного комплекса. Особое место занимала разработка мaтeмaтического обеспечения и программ управления как для штатных условий полета, так и для случая отказа отдельных систем. Было проанализировано более 500 вариантов аварийных ситуаций и найдены алгоритмы их парирования. Исследования по этим вопросам проводились на экспериментальных установках, а также в ходе огневых стендовых испытаний.

Вообще обеспечению надежности и живучести "Энергии" уделялось самое пристальное внимание. Было предусмотрено резервирование основных жизненно важных систем и агрегатов, включая маршевые двигатели, рулевые приводы, турбогенераторные источники электропитания, пиротехнические средства. Комплекс автономного управления также построен с поэлементным и схемным резервированием. Новым в ракете являются специальные средства аварийной защиты, обеспечивающие диагностику состояния маршевых двигателей обеих ступеней и своевременное отключение аварийного агрегата при отклонениях в его работе. В дополнение к этому установлены эффективные системы предупреждения пожара или взрыва.

Принятые мepы сводят до минимума вероятность аварийного исхода при пуске. Так, при возникновении нештатной ситуации ракета может продолжать управляемый полет даже с одним выключенным маршевым двигателем первой или второй ступени, что, кстати говоря, невозможно при использовании твердотопливных ускорителей, как это имеет место на системе "Спэйс Шаттл". В нештатных ситуациях при запуске пилотируемого орбитального корабля конструктивные меры, заложенные в ракете, позволяют либо обеспечить выведение корабля на низкую "одиовитковую" траекторию полета по орбите искусственного спутника, Земли с последующей посадкой на один из аэродромов, либо осуществить манёвр возврата на активном участке выведения с посадкой корабля на полосу, расположенную вблизи стартового комплекса.

Известно, что нельзя создать сложную техническую систему, работающую абсолютно безотказно. Поэтому при запуске беспилотных нагрузок, в случае аварии носителя и невозможности выведения космического аппарата на орбиту, ракета приводится в специальные зоны по трассе полета, где возможный ущерб будет минимальным, но вероятность таких ситуаций достаточно мала.

Итак, ко времени первого старта "Энергии" была завершена большая программа научно-исследовательских и опытно-конструкторских работ. Всего для этой цели было создано более 200 экспериментальных установок, 34 крупногабаритные конструктивные сборки, собрано 5 полноразмерных изделий, при этом общее количество проведенных испытаний превысило 6,5 тысячи. Кроме того, модульная часть блока первой ступени успешно прошла летные испытания при пусках новой ракеты-носителя среднего класса. Основная цель, которая ставилась перед ее первым испытательным полетом - получение опытных данных о работоспособности конструкции самой ракеты, ее двигательных установок, других бортовых систем в натурных условиях пуска, т.е. данных, которые невозможно получить в ходе стендовых испытаний, была полностью достигнута. Подтверждена правильность проектно-конструкторских решений, стратегии и объема наземной отработки. Продемонстрирована высокая точность работы всех бортовых систем.

Без замечаний прошел и заключительный участок работы ракеты-носителя, на котором требовалось обеспечить условия для отделения полезного груза, в данном случае, - макета космического аппарата. К сожалению, схемная ошибка в одном из бортовых приборов макета космического аппарата не позволила ему после отделения набрать заданную скорость и выйти на орбиту.

Положительный результат первого испытания системы такого класса, являющейся итогом комплекса целенаправленных научно-исследовательских, проектных и инженерных работ, не мог быть случайным - случайной может быть только авария. Это хорошо известно специалистам. Напротив, неудачи в начале летных испытаний не позволили бы утверждать, что система жизнеспособна, - оставалось бы место для сомнений в отсутствии принципиальных недоработок.

Случайные отказы в таких сложных технических системах могут проявиться в основном из-за непроизвольно внесенного и не обнаруженного дефекта, при сборке и эксплуатации. В этой связи в настоящее время вся дальнейшая отработка сводится к стабилизации технологии изготовления, совершенствованию методов контроля качества и их полноты.

Ракета-носитель "Энергия" - составная часть ракетно-космической системы, включающей, помимо собственно ракеты с полезной нагрузкой, уникальный по масштабам, возможностям и техническому оснащению наземный комплекс, обеспечивающий подготовку и проведение пусков. Его отличительная особенность, присущая также и самой ракете, - высокая степень автоматизации. Вычислительный комплекс стартовой позиции, управляя множеством агрегатов и механизмов, участвующих в подготовке пуска, взаимодействует с бортовой частью системы управления, контролирующей в свою очередь состояние всех систем ракеты-носителя.

Для отработки в наземных условиях блоков первой, второй ступеней и "пакета" в целом, с включением маршевых двигателей каждой из ступеней на практически полное полетное время, был спроектирован и введен в строй в составе наземного комплекса универсальный стенд-старт. Это крупномасштабное сооружение (газо-пламяотражательный лоток, например, углублен относительно поверхности Земли более чем на 40 метров, а высота находящихся рядом с пусковым столом диверторов-молниеотводов - 225 метров), насыщенное большим количеством необходимых технических и технологических систем, может использоваться и как стартовый комплекс. Именно с него и был произведен первый пуск ракеты-носителя "Энергия".

Новые инженерные принципы заложены в специально созданные криогенные системы заправки ракеты-носителя захоложенными водородом и кислородом. Все процессы заправки автоматизированы, базируются на современной вычислительной технике.

Мы находимся в начале этапа летных испытаний новой сложной ракетно-космической системы. Какие проблемы еще предстоит решить? Ближайшие из них связаны с доведением конструкции до многоразового применения. Стремление использовать неоднократно столь уникальную ракету вполне естественно и понятно. Система на сегодняшнем этапе, безусловно, дорогая. Главные стимулирующим фактором для дальнейшего совершенствования и создания новых ракет-носителей является необходимость снижения стоимости выведения на орбиту единицы массы полезного груза (т.н. удельная стоимость выведения). Эта величина характеризует меру совершенства ракеты-носителя. Анализ показывает, что в дальнейшем для транспортных космических систем одноразового применения отсутствуют какие-либо предпосылки для заметного снижения удельной стоимости выведения. Радикальное решение проблемы многоразового применения носителей связано с появлением нового класса транспортных систем - авиационно-космического. Но здесь многое зависит от материаловедения - нужны новые сверхлегкие и прочные конструкционные материалы.

Задачей дня является обеспечение посадки орбитального корабля в автоматическом режиме без участия пилотов, а в дальнейшем - и отдельных блоков и ступеней. В настоящее время автоматизированный полет от взлета до посадки реализуется и в авиационных системах, например, на среднемагистральном самолете Ту-204. Проблема назревшая.

Роль пилотируемых полетов на носителях такого класса еще не вполне ясна - таково мнение многих специалистов. Слепое копирование авиации здесь неуместно - космическая техника развивалась своим путем. Сначала в космос проникли автоматы и лишь за ними последовал человек. В будущем космос представляется в основном полем деятельности автоматических космических аппаратов и транспортных систем. Роль человека, видимо, будет связана с исследованиями, специфическими работами по обслуживанию, восстановлению систем.

Фундаментальной проблемой, связанной с обеспечением многоразовости, является диагностика состояния конструкций. Современный уровень диагностических методов пока еще не позволяет предупредить аварии из-за скрытых, зародившихся в процессе эксплуатации дефектов. Надежная и достоверная оценка запаса ресурса на основе контроля объективными и неразрушающими методами - задача, которую предстоит научиться решать.

Более отдаленные проблемы относятся к выработке направления создания на базе "Энергии" унифицированных модулей и блоков перспективных носителей сверхтяжелого класса для использования околоземного пространства в интересах народного хозяйства, организации промышленных производств в космосе, исследованию Луны, Марса и других планет, организации в будущем международной марсианской экспедиции. Проблем много, но сегодня уже можно утверждать, что основа для их решения Советском Союзе заложена.

Б.Губанов
Главный конструктор ракетно-космической системы "Энергия"


Возврат к предыдущей публикации Возврат к оглавлению Библиографии Переход к последующей публикации

Web-master: ©Вадим Лукашевич 1998-2005
E-mail: buran@buran.ru